Assembles data in format compliant with BIC requirements. Used
internally by run_plexedpiper
.
Usage
make_rii_peptide_gl(
msnid,
masic_data,
fractions,
samples,
references,
annotation,
org_name = "Rattus norvegicus",
fasta_file
)
make_results_ratio_gl(
msnid,
masic_data,
fractions,
samples,
references,
annotation,
org_name = "Rattus norvegicus",
sep = "_",
fasta_file
)
make_rii_peptide_ph(
msnid,
masic_data,
fractions,
samples,
references,
annotation,
org_name = "Rattus norvegicus",
sep = "_",
fasta_file
)
make_results_ratio_ph(
msnid,
masic_data,
fractions,
samples,
references,
annotation,
org_name = "Rattus norvegicus",
sep = "_",
fasta_file
)
assess_redundant_protein_matches(msnid, collapse = "|")
assess_noninferable_proteins(msnid, collapse = "|")
Arguments
- msnid
(MSnID object) final filtered version of MSnID object
- masic_data
(object coercible to
data.table
) final filtered version of MASIC table- fractions
(object coercible to
data.table
) study design table linking Dataset with PlexID- samples
(object coercible to
data.table
) study design table linking sample names with TMT channels and PlexID- references
(object coercible to
data.table
) study design table describing reference value calculation- annotation
(character) format of
accessions(msnid)
. Either"refseq"
,"uniprot"
, or"gencode"
(case insensitive).- org_name
(character) scientific name of organism (e.g.,
"Homo sapiens"
,"Rattus norvegicus"
,"Mus musculus"
, etc.). Case sensitive.- fasta_file
(character) Path to FASTA file
- sep
(character) used to concatenate protein, SiteID, and peptide.
- collapse
(character) used to collapse proteins in
assess_redundant_protein_matches
Details
The ratio
and rii
functions require columns "redundantAccessions",
"noninferableProteins" and "percentAACoverage" (created with
compute_accession_coverage
) to be present in
psms(msnid)
.
make_rii_peptide_gl
: returns 'RII_peptide.txt' table (global)make_results_ratio_gl
: returns 'results_ratio.txt' table (global)make_rii_peptide_ph
: returns 'RII_peptide.txt' table (phospho)make_results_ratio_ph
: returns 'results_ratio.txt' table (phospho)assess_redundant_protein_matches
: appends proteins matched to multiple peptides. Creates the "redundantAccessions" column inpsms(msnid)
.assess_noninferable_proteins
: appends proteins with identical peptide sets. Creates the "noninferableProteins" column inpsms(msnid)
.
Examples
if (FALSE) {
# Prepare MS/MS IDs ----
path_to_MSGF_results <- system.file("extdata/global/msgf_output",
package = "PlexedPiperTestData")
msnid <- read_msgf_data(path_to_MSGF_results)
msnid <- MSnID::correct_peak_selection(msnid)
show(msnid)
msnid <- filter_msgf_data_peptide_level(msnid, 0.01)
show(msnid)
path_to_FASTA <- system.file(
"extdata/Rattus_norvegicus_NCBI_RefSeq_2018-04-10.fasta.gz",
package = "PlexedPiperTestData"
)
msnid <- compute_num_peptides_per_1000aa(msnid, path_to_FASTA)
msnid <- filter_msgf_data_protein_level(msnid, 0.01)
show(msnid)
msnid <- assess_redundant_protein_matches(msnid)
msnid <- assess_noninferable_proteins(msnid)
fst <- Biostrings::readAAStringSet(path_to_FASTA)
names(fst) <- gsub(" .*", "", names(fst)) # make names match accessions
msnid <- MSnID::compute_accession_coverage(msnid, fst)
head(psms(msnid))
# Prepare table with reporter ion intensities ----
path_to_MASIC_results <- system.file("extdata/global/masic_output",
package = "PlexedPiperTestData")
masic_data <- read_masic_data(path_to_MASIC_results,
interference_score = TRUE)
masic_data <- filter_masic_data(masic_data, 0.5, 0)
# Read study design files ----
library(readr)
fractions <- read_tsv(system.file("extdata/study_design/fractions.txt",
package = "PlexedPiperTestData"))
samples <- read_tsv(system.file("extdata/study_design/samples.txt",
package = "PlexedPiperTestData"))
references <- read_tsv(system.file("extdata/study_design/references.txt",
package = "PlexedPiperTestData"))
# Create final tables ----
results_ratio <- make_results_ratio_gl(msnid, masic_data,
fractions, samples, references,
annotation = "RefSeq",
org_name = "Rattus norvegicus",
fasta_file = path_to_FASTA)
head(results_ratio, 10)
rii_peptide <- make_rii_peptide_gl(msnid, masic_data,
fractions, samples, references,
annotation = "RefSeq",
org_name = "Rattus norvegicus",
fasta_file = path_to_FASTA)
head(rii_peptide, 10)
# Clean-up cache
unlink(".Rcache", recursive = TRUE)
}