1.2 Prepare Reporter Ion Intensities

1.2.1 Read MASIC Output

MASIC is a tool for extracting ion intensities. With proper parameter settings, it can be used for extracting TMT (or iTRAQ) reporter ion intensities. In addition, it reports a number of other helpful metrics. Notably, the interference score at the precursor ion level and the signal-to-noise ratio (S/N) at the reporter ion level (computed by Thermo software). The interference score reflects the proportion of the ion population that was isolated for fragmentation that is due to the targeted ion. In other words, 1 - InterferenceScore is due to co-isolated species that have similar elution time and precursor ion m/z. The first step in the preparation of the reporter ion intensity data is to read the MASIC results. By default, the interference score is not included, so we need to set that argument to TRUE in order to filter the results after.

Similar to the MS-GF+ results, we can read the MASIC results from a local folder with PlexedPiper::read_masic_data or from PNNL’s DMS with PNNL.DMS.utils::read_masic_data_from_DMS.

## Get MASIC results from local folder - not run
# Get file path
path_to_MASIC_results <- "path_to_folder_containing_necessary_files"
# Read MASIC results from path
masic_data <- read_masic_data(path_to_MASIC_results, 
                              interference_score = TRUE)
## Get MASIC results from DMS
masic_data <- read_masic_data_from_DMS(data_package_num, 
                                       interference_score = TRUE)

Normally, this would display progress bars in the console as the data is being fetched. However, the output was suppressed to save space.

Table 1.2 shows the first 6 rows of the unfiltered masic_data.

Table 1.2: First 6 rows of the unfiltered MASIC data.
Dataset ScanNumber Ion_126.128 Ion_127.125 Ion_127.131 Ion_128.128 Ion_128.134 Ion_129.131 Ion_129.138 Ion_130.135 Ion_130.141 Ion_131.138 Ion_126.128_SignalToNoise Ion_127.125_SignalToNoise Ion_127.131_SignalToNoise Ion_128.128_SignalToNoise Ion_128.134_SignalToNoise Ion_129.131_SignalToNoise Ion_129.138_SignalToNoise Ion_130.135_SignalToNoise Ion_130.141_SignalToNoise Ion_131.138_SignalToNoise InterferenceScore
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 2 70562.39 24864.62 17165.80 35625.00 92236.87 9640.23 8578.05 6996.69 11833.07 32281.34 71.47 25.17 17.38 36.04 93.32 9.75 8.67 7.07 11.96 32.71 0.996
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 3 23706.89 13559.32 5856.83 16322.71 34294.90 4853.11 7938.24 0.00 1465.03 18182.27 26.12 14.94 6.45 17.97 37.77 5.34 8.74 NA 1.61 19.93 0.993
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 4 12459.86 11785.91 10932.51 10653.32 12328.62 5959.86 9905.82 8387.04 11166.70 14053.40 12.40 11.75 10.90 10.64 12.31 5.96 9.91 8.40 11.18 14.13 1.000
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA NA NA NA NA NA NA NA NA NA 1.000
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 6 0.00 10998.67 0.00 21077.05 2725.50 0.00 0.00 0.00 0.00 6800.70 NA 9.19 NA 17.57 2.27 NA NA NA NA 5.66 1.000
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 8 6166.82 1371.27 2418.35 8087.76 5485.35 0.00 0.00 1543.48 1943.96 7436.60 6.92 1.54 2.71 9.04 6.13 NA NA 1.72 2.16 8.26 0.969


1.2.2 Filter MASIC Data

The only other step in reporter ion intensity data preparation is to filter the results. Currently, we recommend keeping entries where at least 50% of the ion population is due to the targeted ion (interference score \(\geq\) 0.5) and not filtering by S/N. To only reformat the data and not filter it, set both thresholds to 0.

# Filter MASIC data
masic_data <- filter_masic_data(masic_data, 
                                interference_score_threshold = 0.5,
                                s2n_threshold = 0)

Table 1.2 shows the first 6 rows of the filtered masic_data.

Table 1.3: First 6 rows of the filtered MASIC data.
Dataset ScanNumber Ion_126.128 Ion_127.125 Ion_127.131 Ion_128.128 Ion_128.134 Ion_129.131 Ion_129.138 Ion_130.135 Ion_130.141 Ion_131.138
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 2 70562.39 24864.62 17165.80 35625.00 92236.87 9640.23 8578.05 6996.69 11833.07 32281.34
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 3 23706.89 13559.32 5856.83 16322.71 34294.90 4853.11 7938.24 0.00 1465.03 18182.27
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 4 12459.86 11785.91 10932.51 10653.32 12328.62 5959.86 9905.82 8387.04 11166.70 14053.40
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 6 0.00 10998.67 0.00 21077.05 2725.50 0.00 0.00 0.00 0.00 6800.70
MoTrPAC_Pilot_TMT_W_S1_01_12Oct17_Elm_AQ-17-09-02 8 6166.82 1371.27 2418.35 8087.76 5485.35 0.00 0.00 1543.48 1943.96 7436.60

Lastly, we will save the processed MSnID and MASIC data to an .RData file with compression. This is useful in case we want to create different cross-tabs with new study design tables later on.

# Save processed MSnID and MASIC data
save(msnid, masic_data, file = "data/3442_processed_msnid_and_masic.RData",
     compress = TRUE)