References

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W. and Iannone, R., Rmarkdown: Dynamic Documents for r, from https://CRAN.R-project.org/package=rmarkdown, 2022.
Beausoleil, S. A., Villén, J., Gerber, S. A., Rush, J. and Gygi, S. P., A Probability-Based Approach for High-Throughput Protein Phosphorylation Analysis and Site Localization, Nature Biotechnology, vol. 24, no. 10, pp. 1285–92, accessed February 12, 2022, from https://www.nature.com/articles/nbt1240, October 2006. DOI: 10.1038/nbt1240
Berglund, M. and Wieser, M. E., Isotopic Compositions of the Elements 2009 (IUPAC Technical Report), Pure and Applied Chemistry, vol. 83, no. 2, pp. 397–410, accessed February 12, 2022, from https://www.degruyter.com/document/doi/10.1351/PAC-REP-10-06-02/html, January 2011. DOI: 10.1351/PAC-REP-10-06-02
Carlson, M., Org.hs.eg.db: Genome Wide Annotation for Human, 2022.
Durinck, S. and Huber, W., biomaRt: Interface to BioMart Databases (i.e. Ensembl), 2022.
Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A. and Huber, W., BioMart and Bioconductor: A Powerful Link Between Biological Databases and Microarray Data Analysis, Bioinformatics, vol. 21, pp. 3439–40, 2005.
Durinck, S., Spellman, P. T., Birney, E. and Huber, W., Mapping Identifiers for the Integration of Genomic Datasets with the r/Bioconductor Package biomaRt, Nature Protocols, vol. 4, pp. 1184–91, 2009.
Falcon, S. and Gentleman, R., Using GOstats to Test Gene Lists for GO Term Association, Bioinformatics, vol. 23, no. 2, pp. 257–58, accessed May 5, 2022, from https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btl567, January 2007. DOI: 10.1093/bioinformatics/btl567
Falcon, S. and Gentleman, R., Using GOstats to Test Gene Lists for GO Term Association., Bioinformatics, vol. 23, no. 2, pp. 257–58, 2007.
Gentleman, R., GOstats: Tools for Manipulating GO and Microarrays, 2022.
Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., Griss, J., et al., The Reactome Pathway Knowledgebase 2022, Nucleic Acids Research, vol. 50, no. D1, pp. D687–92, accessed May 2, 2022, from https://academic.oup.com/nar/article/50/D1/D687/6426058, January 2022. DOI: 10.1093/nar/gkab1028
Goeman, J. J. and Mansmann, U., Multiple Testing on the Directed Acyclic Graph of Gene Ontology, Bioinformatics, vol. 24, no. 4, pp. 537–44, accessed October 11, 2021, from https://doi.org/10.1093/bioinformatics/btm628, February 2008. DOI: 10.1093/bioinformatics/btm628
Gu, Z., Circlize: Circular Visualization, from https://CRAN.R-project.org/package=circlize, 2022a.
Gu, Z., ComplexHeatmap: Make Complex Heatmaps, 2022b.
Gu, Z., Eils, R. and Schlesner, M., Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data, Bioinformatics, 2016.
Gu, Z., Gu, L., Eils, R., Schlesner, M. and Brors, B., Circlize Implements and Enhances Circular Visualization in r, Bioinformatics, vol. 30, pp. 2811–12, 2014.
Huang, D. W., Sherman, B. T. and Lempicki, R. A., Bioinformatics Enrichment Tools: Paths Toward the Comprehensive Functional Analysis of Large Gene Lists, Nucleic Acids Research, vol. 37, no. 1, pp. 1–13, accessed September 7, 2021, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2615629/, January 2009. DOI: 10.1093/nar/gkn923
Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M. N., and Sergushichev, A., Fast Gene Set Enrichment Analysis, Bioinformatics, Jun. 2016.
Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P. and Tamayo, P., The Molecular Signatures Database Hallmark Gene Set Collection, Cell Systems, vol. 1, no. 6, pp. 417–25, accessed May 6, 2022, from https://linkinghub.elsevier.com/retrieve/pii/S2405471215002185, December 2015. DOI: 10.1016/j.cels.2015.12.004
Maleki, F., Ovens, K., Hogan, D. J. and Kusalik, A. J., Gene Set Analysis: Challenges, Opportunities, and Future Research, Frontiers in Genetics, vol. 11, p. 654, accessed September 7, 2021, from https://www.frontiersin.org/article/10.3389/fgene.2020.00654, 2020. DOI: 10.3389/fgene.2020.00654
Mootha, Vamsi K., Daly, M. J., Patterson, N., Hirschhorn, J. N., Groop, L. C. and Altshuler, D., Reply to "Statistical Concerns about the GSEA Procedure", Nature Genetics, vol. 36, no. 7, pp. 663–63, accessed April 4, 2022, from http://www.nature.com/articles/ng0704-663b, July 2004. DOI: 10.1038/ng0704-663b
Mootha, Vamsi K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., et al., PGC-1α-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes, Nature Genetics, vol. 34, no. 3, pp. 267–73, accessed September 19, 2021, from https://www.nature.com/articles/ng1180, July 2003. DOI: 10.1038/ng1180
Müller, K. and Wickham, H., Tibble: Simple Data Frames, from https://CRAN.R-project.org/package=tibble, 2021.
Ooms, J., Writexl: Export Data Frames to Excel Xlsx Format, from https://CRAN.R-project.org/package=writexl, 2021.
Pagès, H., Aboyoun, P., Gentleman, R. and DebRoy, S., Biostrings: Efficient Manipulation of Biological Strings, from https://bioconductor.org/packages/Biostrings, 2022.
Pesquita, C., Semantic Similarity in the Gene Ontology, in The Gene Ontology Handbook, C. Dessimoz and N. Škunca, Eds., New York, NY: Springer, accessed October 7, 2021, from https://doi.org/10.1007/978-1-4939-3743-1_12, pp. 161–73, 2017.
Petyuk, V., MSnID: Utilities for Exploration and Assessment of Confidence of LC-MSn Proteomics Identifications, 2022a.
Petyuk, V., MSnSet.utils: Miscellaneous Functions for Proteomics Data Analysis, 2021.
Petyuk, V., PlexedPiperTestData: Example of MASIC and MS-GF+ Ouput, 2022b.
Petyuk, V., Nestor, M. and Moon, J., PNNL.DMS.utils: Tools for Accessing PNNL’s Data Management System, 2022.
Phipson, B. and Smyth, G. K., Permutation P-Values Should Never Be Zero: Calculating Exact P-Values When Permutations Are Randomly Drawn, Statistical Applications in Genetics and Molecular Biology, vol. 9, no. 1, accessed April 4, 2022, from https://www.degruyter.com/document/doi/10.2202/1544-6115.1585/html, January 2010. DOI: 10.2202/1544-6115.1585
Relations in the Gene Ontology, Gene Ontology Resource, October 2021.
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W. and Smyth, G. K., limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies, Nucleic Acids Research, vol. 43, no. 7, p. e47, 2015. DOI: 10.1093/nar/gkv007
Smyth, G. K., Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol. 3, p. Article3, 2004. DOI: 10.2202/1544-6115.1027
Smyth, G., Hu, Y., Ritchie, M., Silver, J., Wettenhall, J., McCarthy, D., Wu, D., et al., Limma: Linear Models for Microarray Data, from http://bioinf.wehi.edu.au/limma, 2022.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., et al., Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles, Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15545–50, accessed September 7, 2021, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239896/, October 2005. DOI: 10.1073/pnas.0506580102
Väremo, L., Nielsen, J. and Nookaew, I., Enriching the Gene Set Analysis of Genome-Wide Data by Incorporating Directionality of Gene Expression and Combining Statistical Hypotheses and Methods, Nucleic Acids Research, vol. 41, no. 8, pp. 4378–91, accessed April 4, 2022, from https://academic.oup.com/nar/article/41/8/4378/2408999, April 2013. DOI: 10.1093/nar/gkt111
vladislav.petyuk@pnnl.gov, V. P., PlexedPiper: Pipeline for Isobaric Quantification, 2022.
Wickham, H., Downlit: Syntax Highlighting and Automatic Linking, from https://CRAN.R-project.org/package=downlit, 2021.
Wickham, H., Ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, from https://ggplot2.tidyverse.org, 2016.
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H. and Dunnington, D., Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, from https://CRAN.R-project.org/package=ggplot2, 2022.
Wickham, H., François, R., Henry, L. and Müller, K., Dplyr: A Grammar of Data Manipulation, from https://CRAN.R-project.org/package=dplyr, 2022.
Wickham, H. and Seidel, D., Scales: Scale Functions for Visualization, from https://CRAN.R-project.org/package=scales, 2022.
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., et al., clusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data, The Innovation, vol. 2, no. 3, p. 100141, 2021. DOI: 10.1016/j.xinn.2021.100141
Xiao, Y., Hsiao, T.-H., Suresh, U., Chen, H.-I. H., Wu, X., Wolf, S. E. and Chen, Y., A Novel Significance Score for Gene Selection and Ranking, Bioinformatics (Oxford, England), vol. 30, no. 6, pp. 801–7, March 2014. DOI: 10.1093/bioinformatics/btr671
Xie, Y., Bookdown: Authoring Books and Technical Documents with R Markdown, Boca Raton, Florida: Chapman; Hall/CRC, from https://bookdown.org/yihui/bookdown, 2016.
Xie, Y., Bookdown: Authoring Books and Technical Documents with r Markdown, from https://CRAN.R-project.org/package=bookdown, 2022a.
Xie, Y., Dynamic Documents with R and Knitr, Boca Raton, Florida: Chapman; Hall/CRC, from https://yihui.org/knitr/, 2015.
Xie, Y., Knitr: A Comprehensive Tool for Reproducible Research in R, in Implementing Reproducible Computational Research, V. Stodden F. Leisch and R. D. Peng, Eds., Chapman; Hall/CRC, from http://www.crcpress.com/product/isbn/9781466561595, 2014.
Xie, Y., Knitr: A General-Purpose Package for Dynamic Report Generation in r, from https://yihui.org/knitr/, 2022b.
Xie, Y., Allaire, J. J. and Grolemund, G., R Markdown: The Definitive Guide, Boca Raton, Florida: Chapman; Hall/CRC, from https://bookdown.org/yihui/rmarkdown, 2018.
Xie, Y., Dervieux, C. and Riederer, E., R Markdown Cookbook, Boca Raton, Florida: Chapman; Hall/CRC, from https://bookdown.org/yihui/rmarkdown-cookbook, 2020.
Yu, G., clusterProfiler: A Universal Enrichment Tool for Interpreting Omics Data, 2022a.
Yu, G., Gene Ontology Semantic Similarity Analysis Using GOSemSim, Methods in Molecular Biology, vol. 2117, pp. 207–15, 2020. DOI: 10.1007/978-1-0716-0301-7_11
Yu, G., GOSemSim: GO-Terms Semantic Similarity Measures, from https://yulab-smu.top/biomedical-knowledge-mining-book/, 2022b.
Yu, G., ReactomePA: Reactome Pathway Analysis, from https://yulab-smu.top/biomedical-knowledge-mining-book/, 2022c.
Yu, G. and He, Q.-Y., ReactomePA: An r/Bioconductor Package for Reactome Pathway Analysis and Visualization, Molecular BioSystems, vol. 12, no. 12, pp. 477–79, from http://pubs.rsc.org/en/Content/ArticleLanding/2015/MB/C5MB00663E, 2016. DOI: 10.1039/C5MB00663E
Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y. and Wang, S., GOSemSim: An r Package for Measuring Semantic Similarity Among GO Terms and Gene Products, Bioinformatics, vol. 26, no. 7, pp. 976–78, 2010. DOI: 10.1093/bioinformatics/btq064
Yu, G., Wang, L.-G., Han, Y. and He, Q.-Y., clusterProfiler: An r Package for Comparing Biological Themes Among Gene Clusters, OMICS: A Journal of Integrative Biology, vol. 16, no. 5, pp. 284–87, 2012. DOI: 10.1089/omi.2011.0118
Zhu, H., kableExtra: Construct Complex Table with Kable and Pipe Syntax, from https://CRAN.R-project.org/package=kableExtra, 2021.
Zyla, J., Marczyk, M., Weiner, J. and Polanska, J., Ranking Metrics in Gene Set Enrichment Analysis: Do They Matter?, BMC Bioinformatics, vol. 18, no. 1, p. 256, accessed September 19, 2021, from https://doi.org/10.1186/s12859-017-1674-0, May 2017. DOI: 10.1186/s12859-017-1674-0